Hivatkozások Moson Péter matematikai tárgyú publikációira / Citation

I would appreciate if you could inform me about the citations not included in the list below (moson@tutor.nok.bme.hu).

1. On the arbitrary differentiability of the transformation to normal form in case of structurally unstable focus. Proc. of 4-th Scientific Conf. (oroszul). Publ. House of Leningrad State Univ. 1975, 21-22.

  1. Bibikov Yu.N. Multi-frequency nonlinear oscillations and their bifurcations. Leningrad, 1991. (ISBN 5-288-00414-5) 143p.

2. On isolated periodic solutions of autonomous systems. (oroszul) Univ. Sci. Bp. Math. 19, 1976, 63-67.

  1. Farkas M. Periodic motions. Springer, 1994. (ISBN 0-387-94204-1). 577p.

3. Examples of isolated periodic solutions (oroszul) Per. Polytech. Mech. Eng. 21, 1977, 1, 13-23.

  1. Farkas M. Periodic motions. Springer, 1994. (ISBN 0-387-94204-1). 577p.

4. On isolatedness of periodic solution (magyarul - in Hungarian). Fiatal oktatók és kutatók tudományos fóruma, BME, Budapest, 1978. 23-28.

5. Quasi-periodic solutions of differential equations depending on parameters. ZAMM, 65, 1985, 4, T86-T87.

  1. Sevriuk Mb Chaos 5 552 95
  1. Broer, H.W., Huitema, G. B., Sevryuk, M.B.: Quasi-peridoc motions in families of dynamical systems. Order amidst chaos. Lecture Notes in Mathematics. 1645. (ISBN 3-540-62025-7), 195p.

6. Quasi-periodic solutions of periodic systems of differential equations depending on parameters (oroszul). ICNO-X. Varna, Bulgaria, 1984, Proceedings, 393-397.

7. Quasi-periodic solutions of differential equations depending on parameters I. Vestnik Leningrad University 2, 1986, 16-22.

  1. Bibikov Yu.N. Multi-frequency nonlinear oscillations and their bifurcations. Leningrad, 1991. (ISBN 5-288-00414-5) 143p.
  2. Sevriuk Mb Chaos 5 552 95
  3. Broer, H.W., Huitema, G. B., Sevryuk, M.B.: Quasi-peridoc motions in families of dynamical systems. Order amidst chaos. Lecture Notes in Mathematics. 1645. (ISBN 3-540-62025-7), 195p.
  4. Sevryuk MB Physica D 112 132 98

8. Quasi-periodic solutions of differential equations depending on parameters II. Vestnik Leningrad University 3, 1986, 34-39.

  1. Bibikov Yu.N. Multi-frequency nonlinear oscillations and their bifurcations. Leningrad, 1991. (ISBN 5-288-00414-5) 143p.
  2. Sevriuk Mb Chaos 5 552 95
  3. Broer, H.W., Huitema, G. B., Sevryuk, M.B.: Quasi-peridoc motions in families of dynamical systems. Order amidst chaos. Lecture Notes in Mathematics. 1645. (ISBN 3-540-62025-7), 195p.
  4. Sevryuk MB Physica D 112 132 98

9. Investigation of 4th order reversible system in the case of a pair of pure imaginary and two zero eigenvalues (oroszul). Differential equations and applications. Proceedings of 3rd Conf. Rousse, Bulgaria, 1986, 277-280.

10. Quasi-periodic solutions of a special system. Colloq. Math. Soc. J.Bolyai 47. Differential Equations: Qualitative theory, Szeged, Hungary, 781-788.

  1. Bibikov Yu.N. Multi-frequency nonlinear oscillations and their bifurcations. Leningrad, 1991. (ISBN 5-288-00414-5) 143p.
  2. J. Differencialniye Uravneniya, XXI, 10, 1985. p1832.

11. Local investigation of autonomous systems in the case of eigenvalues 0,0,+i,-i. Proceedings ICNO-XI. Budapest, 1987, 451-455.

12. Quasi-periodic solutions of coupled Volterra-Lotka oscillators. Qualitative Theory of Diff. Equations. Colloq. Math. Soc. J. Bolyai, 53, 427-432.

13.---, H.I. Freedman: Persistence definitions and their connections. Proc. Amer. Math. Soc. 109, 1990, 1025-1033.

MR3056169 Reviewed Gopalkrishnan, Manoj; Miller, Ezra; Shiu, Anne A projection argument for differential inclusions, with applications to persistence of mass-action kinetics. SIGMA Symmetry Integrability Geom. Methods Appl. 9 (2013), Paper 025, 25 pp. (Reviewer: Murad Banaji) 34A60 (37B25 37C10 37C15 58J99 92C45)

PDF Clipboard Journal Article

 

MR3040972 Reviewed Wang, Yuanshi Dynamics of plant-pollinator-robber systems. J. Math. Biol. 66 (2013), no. 6, 1155–1177. (Reviewer: Yanguang (Charles) Li) 92D25 (34C37 37N25)

PDF Clipboard Journal Article

 

MR2966665 Reviewed Lou, Jie; Lou, Yijun; Wu, Jianhong Threshold virus dynamics with impulsive antiretroviral drug effects. J. Math. Biol. 65 (2012), no. 4, 623–652. (Reviewer: Paul Leonard Salceanu) 92C60 (34A37 34C25 37N25)

PDF Clipboard Journal Article

 

MR2683886 Reviewed Chatterjee, Samrat Alternative prey source coupled with prey recovery enhance stability between migratory prey and their predator in the presence of disease. Nonlinear Anal. Real World Appl. 11 (2010), no. 5, 4415–4430. 92D25 (34C60)

PDF Clipboard Journal Article

 

MR2647534 Reviewed Zhou, Xueyong; Cui, Jingan; Shi, Xiangyun; Song, Xinyu A modified Leslie-Gower predator-prey model with prey infection. J. Appl. Math. Comput. 33 (2010), no. 1-2, 471–487. 92D40 (34C23 34D20 92D30)

PDF Clipboard Journal Article

 

MR2532881 Reviewed Zhou, Xueyong; Shi, Xiangyun; Song, Xinyu Analysis of a delay prey-predator model with disease in the prey species only. J. Korean Math. Soc. 46 (2009), no. 4, 713–731. 92D30 (34K18 34K20 34K60 92D25)

PDF Clipboard Journal Article

 

MR2505294 Reviewed Agyemang, Ibrahim; Freedman, H. I. A mathematical model of an agricultural-industrial-ecospheric system with industrial competition. Commun. Pure Appl. Anal. 8 (2009), no. 5, 1689–1707. 91B74 (37N25 37N40)

PDF Clipboard Journal Article

 

MR2475454 Reviewed Song, Xinyu; Li, Senlin; Li, An Analysis of a stage-structured predator-prey system with impulsive perturbations and time delays. J. Korean Math. Soc. 46 (2009), no. 1, 71–82. 34K20 (34D10 34K45 92D25)

PDF Clipboard Journal Article

 

MR2434860 Reviewed Prévost, K.; Beaumont, C.; Magal, P. Asymptotic behavior in a Salmonella infection model. Math. Model. Nat. Phenom. 2 (2007), no. 1, 1–22. 92D30 (34D05 35B40 35Q80 47D06)

PDF Clipboard Journal Article

 

MR2283567 Reviewed Abdurahman, Xamxinur; Teng, Zhidong Persistence and extinction for general nonautonomous n-species Lotka-Volterra cooperative systems with delays. Stud. Appl. Math. 118 (2007), no. 1, 17–43. (Reviewer: Shengqiang Liu) 34K12 (92D25)

PDF Clipboard Journal Article

 

MR2209573 Reviewed Cui, Jing'an; Takeuchi, Yasuhiro Permanence, extinction and periodic solution of predator-prey system with Beddington-DeAngelis functional response. J. Math. Anal. Appl. 317 (2006), no. 2, 464–474. (Reviewer: Alan R. Hausrath) 34C11 (34C25 92D25)

PDF Clipboard Journal Article

 

MR2191989 Reviewed Cui, Jing'an Dispersal permanence of a periodic predator-prey system with Beddington-DeAngelis functional response. Nonlinear Anal. 64 (2006), no. 3, 440–456. (Reviewer: Xu-Sheng Zhang) 34C11 (92D25)

PDF Clipboard Journal Article

 

MR2085492 Reviewed Cui, Jing'an; Takeuchi, Yasuhiro; Lin, Zhenshan Permanence and extinction for dispersal population systems. J. Math. Anal. Appl. 298 (2004), no. 1, 73–93. (Reviewer: Alan R. Hausrath) 92D25 (34C25)

PDF Clipboard Journal Article

 

MR2073957 Reviewed Cantrell, Robert Stephen; Cosner, Chris; Ruan, Shigui Intraspecific interference and consumer-resource dynamics. Discrete Contin. Dyn. Syst. Ser. B 4 (2004), no. 3, 527–546. 34D20 (92D25)

PDF Clipboard Journal Article

 

MR2060425 Reviewed Teng, Zhidong; Li, Zhiming; Jiang, Haijun Permanence criteria in non-autonomous predator-prey Kolmogorov systems and its applications. Dyn. Syst. 19 (2004), no. 2, 171–194. (Reviewer: José C. Sabina de Lis) 34C11 (34D40 92D25)

PDF Clipboard Journal Article

 

MR2008861 Reviewed Li, Zhiming; Teng, Zhidong Permanence for non-autonomous food chain systems with delay. J. Math. Anal. Appl. 286 (2003), no. 2, 724–740. 34K25 (92D25)

PDF Clipboard Journal Article

 

MR1816797 Reviewed Ellermeyer, S. F.; Pilyugin, S. S.; Redheffer, Ray Persistence criteria for a chemostat with variable nutrient input. J. Differential Equations 171 (2001), no. 1, 132–147. 92D40 (34C60)

PDF Clipboard Journal Article

 

MR1788019 Reviewed Feng, Zhilan; Thieme, Horst R. Endemic models with arbitrarily distributed periods of infection. I. Fundamental properties of the model. SIAM J. Appl. Math. 61 (2000), no. 3, 803–833. 92D30 (34C60 35B40 37N25)

PDF Clipboard Journal Article

 

MR1779154 Reviewed Thieme, Horst R. Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166 (2000), no. 2, 173–201. (Reviewer: George Karakostas) 34K20 (37N25 92D25 92D30)

PDF Clipboard Journal Article

 

MR1761560 Reviewed Redheffer, Ray Generalized monotonicity, integral conditions and partial survival. J. Math. Biol. 40 (2000), no. 4, 295–320. (Reviewer: Š. Schwabik) 92D25 (34C11)

PDF Clipboard Journal Article

 

MR1622989 Reviewed Thieme, Horst R. Uniform weak implies uniform strong persistence for non-autonomous semiflows. Proc. Amer. Math. Soc. 127 (1999), no. 8, 2395–2403. (Reviewer: Peter Moson) 54H20 (92D30)

PDF Clipboard Journal Article

 

14. Local bifurcations in the case of eigenvalues 0,0.+i,-i. ZAMM, 71, 1991, T 69-70.

15. Persistence. Definitions, Bifurcations. Proceedings of the 5th International Colloquium on Differential Equations. Plovdiv, Bulgaria. August 18-23, 1994. V2, 117-122. Science Culture Technology Publishing. Rebublic of Singapore.

16. ---, H.I. Freedman: Bifurcations in persistence theory. Applied Mathematics and Computation 79: 125-136 (1996).

17. Persistence. Proceedings of the International Conference on Theoretical Biophysics and Biomathematics. Inner Mongolia University Press pp. 195-200 (1997)

 

After 2000 by MathSciNet (www.ams.org)

Author Citations for Peter Moson

Peter Moson is cited 21 times by 33 authors

in the MR Citation Database

Most Cited Publications

Citations

Publication

21

MR1012928 (90k:34054) Freedman, H. I.; Moson, P. Persistence definitions and their connections. Proc. Amer. Math. Soc. 109 (1990), no. 4, 1025–1033. (Reviewer: Benjamin D. Mestel) 34C35 (54H20 58F25 92A15)

 

31.07.2014