Mathematics EP2 (BMETE90AX34)

Lecturer: Dr. Peter Moson (www.math.bme.hu, +3614632690, +36309329626)

Detailed summary of the lectures:

Lecture 1. (February 14, 2024).

Ordinary differential equations are mathematical models for time dependent finite dimensional differentiable deterministic processes.
First order ordinary differential equations, ODEs, $y^{\prime}=\frac{d y}{d x}=f(x, y)$. Definition of the solution, integral curve, trajectory. Initial value (Cauchy) problem: $y^{\prime}=f(x, y) . y\left(x_{0}\right)=y_{0}$. Theorem of Existence \& Uniqueness for the initial value problem (without proof) with conditions $f, \frac{\partial f}{\partial y} \in C^{0}(D)$.
Examples. General solution. $y^{\prime}=f(x), y=\int f(x) d x+c$. Initial value problem $y^{\prime}=$ $y, y(0)=1, y=e^{x}$ (guessed solution).
Special cases.
Separable equation. $\frac{d y}{d x}=g(x) H(y)$. (i) $H(y)=0$, constant solutions. (ii) $\int \frac{d y}{H(y)}=$ $\int g(x) d x+c$ (with proof).
Examples. $y^{\prime}=y$, (i) $y(0)=1$, (ii) $y(0)=0$. Solution (i) $y(x)=e^{x}$, (ii) $y(x)=0$.
Linear equation. $y^{\prime}+P(x) y=Q(x)$. Solution: $y=c e^{\int-P(x) d x}+e^{\int-P(x) d x} \int e^{\int P(x) d x} Q(x) d x$.
Example (solving linear equations - general solution, initial value problem, sketching the integral curve(s): (i) $y^{\prime}=y, y(0)=1, y(0)=0$. Solutions $y(x)=e^{x}, y(x)=0$. (ii) $x y^{\prime}=3 y+$ $x^{2}, y(1)=0$. Solution $y=x^{3}-x^{2} .0<x$.

Literature: Thomas' Calculus Chapter 9, § 1,2.
Homework (optional): Thomas' Calculus. 9.1.11,17, 9.2.15, and sample tests in TEAMS and on my homepage Google: Moson Péter or direct address:
http://tutor.nok.bme.hu/sandwich/general/moremoson/mo.htm .

Lecture 2. (February 21, 2024).

Orthogonal trajectories. Cartesian, polar coordinates (original family $y=c x \rightarrow$
orthogonal family $x^{2}+y^{2}=c^{2}$) and reversely original family $x^{2}+y^{2}=c^{2} \rightarrow$ orthogonal family $y=c x$.
Further example, homework: $y=c e^{x}$, find the orthogonal trajectories, sketch both families of curves.
First order autonomous differential equation $y^{\prime}=f(y)$. Trajectories do not intersect each other. Analytic solution. Separable equation. (i) $f(y)=0, y=y_{1}, \ldots$ constant solutions. (ii) $f(y) \neq 0, \int \frac{d y}{f(y)}=\int d x=x+c$. Geometric solution. Phase portrait (line, trajectories).

Literature: Thomas' Calculus Chapter 9, § 4, $\mathbf{5}$.
Homework (optional): Thomas' Calculus. 9.4.3, 7. , 9.5.17.

Lecture 3. (February 28, 2024).
First order autonomous differential equation $y^{\prime}=f(y)$. Phase portrait. Typical integral curves with inflection points $\left(\frac{d f(y)}{d y}=0\right)$. Example. $y^{\prime}=y^{2}-y-2$.
ODEs of the second order. $y^{\prime \prime}=f\left(x, y, y^{\prime}\right), y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}{ }^{\prime}$. Theorem of existence and uniqueness. Examples: gravity $/ m y^{\prime \prime}=m g$, harmonic oscillator / $y^{\prime \prime}+y=0$.

Linear ordinary differential equations of the second order with constant coefficients. Theorem of structure. General solution of the homogeneous equation (3 cases).
Example: Solution of the harmonic oscillator, as linear equation.
Homework (optional). Find the general solution for the following differential equations $y^{\prime \prime}$ $2 y^{\prime}+2 y=0, y^{\prime \prime}+y^{\prime}=0, y^{\prime \prime}-2 y^{\prime}+y=0$.

Lecture 4. (March 6, 2024).

Linear ordinary differential equations of the second order with constant coefficients. General solution of the nonhomogeneous equation (if the right-hand side is a polynomial, exponential, trigonometric function).
Example: Solution of the gravity, as linear equation with constant coefficients.
FSolve the initial value problem $y^{\prime \prime}+y^{\prime}=-1, y(0)=1, y^{\prime}(0)=-2$ by 2 methods (linear equation, Newton's method - until the third order terms). The idea of these methods: (i) Linear with constant coefficients. Homogeneous, characteristic equation, nonhomogeneous, resonance. (ii) Newton's method. We are looking for the solution in form $y(x)=y(0)+$ $y^{\prime}(0) x+\frac{y^{\prime \prime}(0)}{2!} x^{2}+\cdots=1-2 x+\frac{x^{2}}{2}+\cdots$.
Homework (optional). Solve the initial value problem $y^{\prime \prime}+2 y^{\prime}=3 e^{x}, y(0)=2, y^{\prime}(0)=1$ by 2 methods (linear equation, Newton's method - until the fourth order terms).

Lecture 5. (March 13, 2024).

Find the general solution $y^{\prime \prime}+y=e^{-x}+\sin 2 x+\cos x$. Explanation of the resonance.
2 dimensional systems, autonomous systems, linear systems with constant coefficients. Matrices. Eigenvalues, eigenvectors. General solution. General solution, phase portraits (in case of real eigenvalues - saddle, node.
Homework. (Optional)
Find the general solution of the following differential equation $y^{\prime \prime}+y^{\prime}-2 y=1+$ $2 \sin x \cos x+2 \cosh x-2 x^{2}$.

Lecture 6. (March 20, 2024). Planned.

Sample Test 1.

General solution, phase portraits (in case of real eigenvalues - saddle, node - complex eigenvalues - focus, center).
Example: $\dot{x}=-2 x+a y, \dot{y}=x-2 y, \quad a=-1,+1,+9$.
Equations - systems. $\ddot{x}+x=0 \quad \Leftrightarrow \quad \dot{x}=y, \dot{y}=-x$.
Homework. (Optional)

Find the general solution, sketch the phase portrait of the system of differential equations $\dot{x}=-3 x+2 y, \dot{y}=a x-3 y, \quad a=-2,2,8$. Remark: systems will not be included to Test1.

Lecture 7. (March 27, 2024).
Test 1. Room K. 221. 8:15 a.m.

