TEAMS. Mathematics EP2, Test 2. May 6, 2020.

8:15-9:35. 80 minutes. $5 * 10=50 \%$
 Good Luck!

Please upload your results in form of one pdf (prepared by CamScanner) until 9:45 as the latest.

The test depends on a parameter \boldsymbol{D}. Please start the title of your uploaded work with this parameter \boldsymbol{D} (1 number) and continue with your NEPTUN code.

The parameter \boldsymbol{D} is the remainder of the number of letters of your full name (as in NEPTUN) divided by 5 . E.g. I am in NEPTUN as Dr Moson Peter, the number of letters is 12 . $12=2 * 5+2$, so $D=2$. Please substitute your \boldsymbol{D} in the test and carry out the calculation with this value.

Test is on the next page.

1. Consider the function $f(x, y)=-\left(x^{2}+y^{2}\right) e^{(D+1) x}$ and the domains $T_{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq(5-D)^{2}, 0 \leq y\right\}, T_{2}=\{(x, y) \mid 0 \leq x \leq 3,0 \leq$ $y \leq 3 D+3\}$. Sketch the domains.
(i) Find the stationary points of f, determine their type (minimum, saddle, etc.).
(ii) Find the global extrema (maximum-minimum points and values) of f on T_{1}.
(iii) Find the center of gravity (mass) of homogeneous domains T_{1}, T_{2} (the density is $\rho(x, y) \equiv 1$.).
(iv) Find the moment of inertia of homogeneous domain T_{2} (the density is $\rho(x, y) \equiv \frac{1}{54}$).
2. Find the closest, farthest points (if they exist) of the set $T_{3}=\{(x, y) \mid x+y=$ $2 D\}$ to the point $P=(6,6)$ by 2 methods (some possible methods: elementary, conditional extremum, parametrization of the boundary). What is the value of these distances?

SOLUTIONS

1. Semicircle, rectangle.
(i) $\left(x_{1}, y_{1}\right)=(0,0)$ maximum. $\left(x_{2}, y_{2}\right)=\left(\frac{-2}{D+1}, 0\right)$ saddle. 10%
(ii) Minimum $-(5-D)^{2} e^{(D+1)(5-D)}$ at $(5-D, 0)$. Maximum 0 at $(0,0) .10 \%$
(iii) The center of gravity of $T_{1}:\left(x_{c}, y_{c}\right)=\left(0, \frac{(5-D) 4}{3 \pi}\right), T_{2}:\left(x_{c}, y_{c}\right)=$ $\left(\frac{3}{2}, \frac{(3 D+3)}{2}\right) \cdot 8+2=10 \%$
(iv) The moment of inertia of $T_{2}: I_{0}=\left((D+1)+(D+1)^{3}\right) / 2.10 \%$
2. Closest $Q=(D, D)$, distance $(6-D) \sqrt{2}$. There is no farthest point. $4+4+2=10 \%$
