Mathematics EP2. TEST 1. 2020-03-25. 8:15-10:00. TEAMS. 80 minutes.
 $\mathbf{1 5}+\mathbf{1 5}+\mathbf{1 0}+\mathbf{1 0}=\mathbf{5 0 \%} .=\mathbf{5 0 \%}$. Good Luck!

You can solve it on paper (or with more sophisticated technics).
Write your name and Neptun code on all paper you turn in.
Take a photo of your solution (or with more sophisticated technics) and turn it in in TEAMS.

The parameter \boldsymbol{D} you can see below is the last digit of your birthday. For example if your birthday is September 23, then $\boldsymbol{D}=\mathbf{3}$. Substitute your value of \boldsymbol{D} instead of all \boldsymbol{D}-s in the exercises and solve them.
Do not forget to write at the beginning of your answer the value of your \boldsymbol{D}.
The Test is on the next page.

Mathematics EP2. TEST 1. 2020-03-25. 8:15-10:00. TEAMS. 80 minutes. $\mathbf{1 5}+\mathbf{1 5}+\mathbf{1 0}+\mathbf{1 0}=\mathbf{5 0 \%} .=\mathbf{5 0 \%}$. Good Luck!

1. Consider the complex numbers: $z_{1}=\sqrt{3}+D i, z_{2}=(D+1)\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)$.

Find the algebraic form of z_{2}. Calculate the value of the following complex numbers: (ii) $z_{1}-z_{2}$, (iii) $z_{1} \cdot z_{2}$, (iv) $z_{2}^{7-D} \cdot 3 * 3+6=15 \%$
2. Find the solution $y=y(x)$ of the initial value problem $y^{\prime \prime}+2 y^{\prime}-3 y=D$, $y(0)=\frac{3-D}{3}, y^{\prime}(0)=-3$ (by 2 methods: linear equation, Newton's method until the 3 rd order terms). $10+5=15 \%$
3. Find the general solution of the equation $y^{\prime \prime}-2 y^{\prime}+2 y=D x .2 * 4=10 \%$
4. Consider the autonomous system of ODEs $\dot{x}=-(D+1) y, \dot{y}=(D+1) x+5 y$. Determine the type of the equilibrium point (node, saddle, etc.), and sketch the phase portrait. Find the general solution as well. 10%

SOLUTIONS

1. (i). $z_{2}=D\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)=-D i$ (ii) $z_{1}-z_{2}=\sqrt{3}+(2 D+1) i$, (iii) $z_{1} \cdot z_{2}=--D(D+1)-i(D+1) \sqrt{3}$ (iv) $z_{1}^{6}=2^{6}\left(\cos 6 \cdot \frac{\pi}{3}+i \sin 6 \cdot \frac{\pi}{3}\right)=64$, (iv) $z_{2}^{4}=16$. $5 * 2=10 \%$
2. The general solution $x=c_{1} e^{x}+c_{2} e^{-3 x}-\frac{D}{3}$. The solution of the solution of the initial value problem is $y=e^{-3 x}-\frac{D}{3}=\frac{3-D}{3}-3 x+\frac{9}{2} x^{2}-\frac{9}{2} x^{3}+\ldots .10+5=15 \%$
3. The general solution $y=c_{1} e^{x} \cos x+c_{2} e^{x} \sin x+\frac{D}{2}(x+1) .10 \%$
4. The characteristic equation $\lambda^{2}-5 \lambda+4(D+1)^{2}=0$. The discriminant is $25-4(D+1)^{2}$. If $D=1,2$, then the phase portrait is unstable node. If $D>2$ then it is an unstable focus. E.g. for $\mathrm{D}=1 \quad \lambda_{1}=1, \lambda_{2}=4$. The general solution is $x(t)=-2 c^{1} e^{-t}+c^{2} e^{-4 t}, y(t)=c^{1} e^{-t}-2 c^{2} e^{-4 t} .10 \%$
