Mathematics EP1 Exam, BME. 2019-01-21. 10:00. E1A. 90 minutes. Good Luck

<u>Theory</u> (4*2,5=10%). Maximum 15 minutes. arctan (inverse tangent) function. Sketch its graph, give its derivative, integral, Maclaurin series (until 2nd order terms).

<u>Exercises</u> 14+10+10+16=50%. Minimum 75 minutes. Explain your solution. The use of paper based documents is allowed.

- 1. Calculate the coordinates of the center of gravity of the homogeneous ($\rho(x, y) \equiv 1$) domain $D = \{(x, y) \mid 0 \le x \le +1, 0 \le y \le e^x\}$. Sketch the domain. 14%
- 2. Let $f(x) = xe^x x$. (i) Find the 3rd order Maclaurin polynomial (Taylor at $x_0 = 0$) of the function f. (ii) Calculate the limit (if it exists) $\lim_{x\to 0} \frac{f(x)}{x^k}$, for k = 1, 2, 3. 10%
- 3. $OA = \vec{a} = \frac{\vec{i} + 2\vec{j} + 2\vec{k}}{3} = \left(+\frac{1}{3}, +\frac{2}{3}, +\frac{2}{3} \right)$, $OB = \vec{b} = -\vec{i} 2\vec{j} + 2\vec{k} = (-1, -2, +2)$. Find the length of vectors \vec{a}, \vec{b} . Calculate $|\vec{a} \vec{b}|, |\vec{a} \times \vec{b}|$. Give some geometric meaning of the previous results. 10%
- 4. Find the general solution of the differential equation $y' = y + e^x$. Solve the initial value problem y(0)=1. Sketch the graph of this solutions (roots, stationary inflection points, etc.). 16%

Solutions (without figures).

<u>*Theory.*</u> Graph, derivative, integral, Maclaurin series 2,5%. Total 4*2,5=10%. <u>*Exercises*</u>

$$1. \ m = \int_{0}^{1} e^{x} dx = e - 1. \ \int_{0}^{1} x e^{x} dx = \left[(x - 1) e^{x} \right]_{0}^{1} = 1. \ x_{c} = \frac{1}{e - 1}. \ \frac{1}{2} \int_{0}^{1} e^{2x} dx = \frac{1}{2} \left[\frac{e^{2x}}{2} \right]_{0}^{1} = \frac{e^{2} - 1}{4} \ y_{c} = \frac{\frac{e^{2} - 1}{4}}{e - 1} = \frac{e + 1}{4}.$$

2. (i)
$$f(x) = xe^x - x = x\left(1 + x + \frac{x^2}{2} + ...\right) - x = x^2 + \frac{x^3}{2} + ...$$
 (ii)

$$k = 1 \quad \lim_{x \to 0} \frac{x^2 + \frac{x}{2} + \dots}{x^1} = \lim_{x \to 0} (x + \frac{x^2}{2} + \dots = 0),$$

$$k = 2$$
 $\lim_{x \to 0} \frac{x^2 + \frac{x}{2} + \dots}{x^2} = \lim_{x \to 0} (1 + \frac{x^2}{2} + \dots) = 1$. If $k = 3$ then there is no limit. 10%

3.
$$|\vec{a}| = 1, |\vec{b}| = 3.$$
 $|\vec{a} - \vec{b}| = \left| \left(+\frac{4}{3}, +\frac{8}{3}, -\frac{4}{3} \right) \right| = \sqrt{\frac{32}{3}}, |\vec{a} \cdot \vec{b}| = \left| -\frac{1}{3} \right| = \frac{1}{3}, |\vec{a} \times \vec{b}| = \left| \left(\frac{8}{3}, \frac{4}{3}, 0 \right) \right| = \sqrt{\frac{16}{3}}.$ $|\vec{a} - \vec{b}|$ is the

length of side *AB* of the triangle *OAB*. $|\vec{a} \cdot \vec{b}|$ is the length of projection of vector \vec{b} on vector \vec{a} . $|\vec{a} \times \vec{b}|/2$ is the area of triangle *OAB*. 10%

4. Linear equation. The general solution $y(x) = c e^{x} + x e^{x}$

The solution of the initial value problem y(0) = 1 is $y(x) = e^x + xe^x = (x+1)e^x$.

Root x = -1, minimum x = -2, inflection point x = -3, asymptote y = 0 when $x \to -\infty$. Total 8+2+6=16%.