Differential Equations 1. October 10, 2018.90 minutes. 17%.

Good Luck!

1. Sketch the one dimensional phase portrait of the autonomous equation $y^{\prime}=\frac{1}{2}-\cos ^{2} y,-\pi \leq y \leq+\pi$. Find the inflection points of the solutions and sketch some integral curves in the plane. $1+1,5=2,5 \%$

Find the orthogonal trajectories of the curves $\left.x^{2}+y^{2}=2(2 x+y)\right)+c$. Sketch both family of curves. $1+1=2 \%$
3. Find the solutions of initial value problems $y(0)=1, y(0)=\frac{1}{2}$ and $y(1)=0$ for equation $y^{\prime} \cdot e^{x}=y^{2}$. Sketch their graphs. . $2+0,5+0,5+0,5=3,5 \%$
4. Consider the equation $y^{\prime \prime}-4 y^{\prime}+4 y=2 e^{2 x}$. Find the general solution. Solve the initial value problem $y(0)=0, y^{\prime}(0)=0$ by 2 methods (linear equation with constant coefficients, Newton' method). $(2+2)+2=6 \%$
5. Find the general solution of equation $y^{\prime}=e^{x}\left(e^{x}-y\right)$. Solve the initial value problems $y(0)=0$. Sketch its graph. $2+1=3 \%$

SOLUTIONS (without detailed explanations, figures).

1. Stable stationary points $y=\frac{\pi}{4}+k \frac{\pi}{2}, k=-1,+1$. Unstable stationary points $y=\frac{\pi}{4}+k \frac{\pi}{2}, k=-2,0$. Inflection points $y=k \frac{\pi}{2}, k= \pm 2, \pm 1,0.1+1,5=2,5 \%$
2. $y-1=\cdot-\frac{1}{c}(x-2)$. Rays. $y^{\prime}=\frac{y-1}{x-2}$. Orthogonal trajectories $(x-2)^{2}+(y-1)^{2}=c^{2}$. Circles.
3. Separable equation. Solution of the initial value problem $y(0)=1$ is $y(x)=e^{x}$. For $y(0)=\frac{1}{2}$ the solution is $y(x)=\frac{1}{e^{-x}+1}$. For $y(1)=0$ the solution is $y(x)=0$.
4. General solution $y=c_{1} e^{2 x}+c_{2} x e^{2 x}+x^{2} e^{2 x}$. The solution of the initial value problem $y=x^{2} e^{2 x}=x^{2}+2 x^{3}+2 x^{4} \cdot(2+2)+2=6 \%$
5. General solution $y=c e^{-e^{x}}+e^{x}-1$. The solution of the initial value problem $y=e^{x}-1.2+1=3 \%$
