Differential Equations 1, 2018. 12.11. 10:00. 90=15+75 minutes. K.F.51. 100\% . Good Luck!

Theory $3 *(2+1)=9 \%$.
Name 3 scientists, who had important research related to Differential Equations as well and whose family names start with letter $\mathbf{G}, \mathbf{E}, \mathbf{P}$. Write the main idea of the mathematical result (definition, theorem, etc.).
Exercises. $15+12+15+9=51 \%$.

1. Find the general solution for the equation $y^{\prime}+2 x^{3}=\frac{2}{x} y, 0<x$. Solve the initial value problem $y(2)=-8$. Check it. Study this function (range, roots, extrema, inflection points, graph, etc.). $10+5=15 \%$.
2. Consider the differential equation $y^{\prime}=\frac{y^{2}+y}{x}, 0<x$. Find the solutions of the following 3 initial value problems: $y(1)=-1, y(1)=-\frac{1}{2}$ and $y(1)=0$. Sketch their graphs in 1 coordinate system. $8+4=12 \%$
3. Consider the second order equation $\ddot{x}+2 \dot{x}-3 x=6$.

Solve the initial value problem $x(0)=-1, \dot{x}(0)=-3$ by 3 methods: (i) linear equation with constant coefficients, (ii) Laplace transformation, (iii) Newton's approximate method- until the 4th order terms.
Transform the equation to 2 dimensional system (by substitution $y=\dot{x}$). Find its solution by matrix method. Sketch the phase portrait. Find on the phase portrait the trajectory corresponding to the solution with initial conditions $x(0)=-1, y(0)=-3.5 * 3=15 \%$
4. Consider the Lyapunov stability of the trivial solution ($x=y=z=0$) of system $\dot{x}=-2 x+2 y, \dot{y}=-2 y+2 z, \dot{z}=-y$ (by 2 methods (i) roots of the characteristic equation, (ii) Routh-Hurwitz criterion). $6+3=9 \%$

Vázlatos megoldások (ábrák nélkül).

1. Linear equation. General solution: $y=c x^{2}-x^{4}$. Solution of the initial value problem $y(x)=2 x^{2}-x^{4}$. Even function (but only part $0<x$ is considered). Range $y \leq 1 . \frac{\lim }{x \rightarrow 0+} y(x)=0$. Root $x_{1}=\sqrt{2}$. Maximum $x_{2}=1$. Inflection point $x_{3}=\frac{\sqrt{3}}{3} .15+10=25 \%$
2. Separable equation. The solution of the initial value problem $y(1)=-1$ is $y(x)=-1$. The solution of the initial value problem $y(1)=-\frac{1}{2}$ is $y(x)=-\frac{1}{x+1}$. The solution of the initial value problem $y(1)=0$ is $y(x)=0.8+4=12 \%$
3. General solution $x=c_{1} e^{t}+c_{2} e^{-3 t}-2$. The solution of the initial value problem $x=e^{-3 t}-2=-1-3 t+\frac{9}{2} t^{2}-\frac{9}{2} t^{3}+\frac{27}{4} t^{4}+\ldots \quad$. \quad The general solution of the system $\binom{x}{y}=c_{1} e^{t}\binom{1}{1}+c_{2} e^{-3 x}\binom{1}{-3}+\left(\frac{-2}{0}\right)$. Saddle point. The trajectory is a ray. $5 * 3=15 \%$
4. Asymptotically stable. The characteristic equation (multiplied by -1) is $\lambda^{3}+4 \lambda^{2}+6 \lambda+4=(\lambda+2)\left(\lambda^{2}+2 \lambda+2\right)=0$. Roots $\lambda_{1}=-2, \lambda_{2,3}=-1 \pm i .6+3=9 \%$
