Differential Equations 1. Test 2. November 21, 2018. 6+5+3+3=17\%. 90 minutes. Good Luck!

1. Solve the initial value problem $x(0)=3, \dot{x}(0)=1$ of the equation $\ddot{x}+2=x$ by 3 methods: (i) Laplace transformation, (ii-iii) equation with constant coefficients, find the articular solution with method of undetermined coefficients and variation of constants. $2+2+2=6 \%$
2. Consider the autonomous system of ODEs $\dot{x}=2 y-2, \dot{y}=-2 x+a y$. Determine the type of the equilibrium point (node, saddle, etc.), and sketch the phase portrait for the following values of the parameter $a:-5,0$. Find the general solution as well. $2,5 * 2=5 \%$
3. Find the general solution of $\dddot{x}-\frac{3}{t} \ddot{x}+\frac{6}{t^{2}} \dot{x}-\frac{6}{t^{3}} x=0, t<0$.
4. Give the lowest order linear homogeneous differential equation with real constant coefficients, for which $x(t)=\cos ^{2}(2 t)+t$ is a solution. Find the general solution as well. Solve the initial value problem $x(0)=1, \dot{x}(0)=1$, $\bar{x}(0)=0, \ldots, x^{(n-1)}(0)=0$, where n is the order of equation. $2+1=3 \%$

SOLUTIONS.

1. General solution $x(t)=c^{1} e^{t}+c^{2} e^{-t}+2$. The solution of the initial value problem is $x(t)=e^{t}+2.2+2+2=6 \%$
2. For $a=0$ the equilibrium point $(0,1)$ is a center $\left(\lambda_{1,2}= \pm 2 i\right)$, orientation is clockwise, the general solution is $x(t)=c^{1} \cos 2 t+c^{2} \sin 2 t, y(t)=1-c^{1} \sin 2 t+c^{2} \cos 2 t$. For $a=+5$ the equilibrium point $\left(-\frac{5}{2}, 1\right)$ is a stable node $\lambda_{1}=-1, \lambda_{2}=-4$. The general solution is $x(t)=-\frac{5}{2}-2 c^{1} e^{-t}+c^{2} e^{-4 t}, y(t)=1+c^{1} e^{-t}-2 c^{2} e^{-4 t} .2,5 * 2=5 \%$
3. $x(t)=c^{1} t+c^{2} t^{2}+c^{3} t^{3} \cdot 2,5+0,5=3 \%$
4. The equation is $x^{(I V)}+16 \ddot{x}=0$ The general solution is $x(t)=c^{1}+c^{2} t+c^{3} \sin 4 t+c^{4} \cos 4 t$. The particular solution is $x(t)=1+t$. $2+1=3 \%$
