Differential Equations 1. Test 2. November 21, 2018. 6+5+3+3=17%. 90 minutes. Good Luck!

1. Solve the initial value problem x(0)=3, $\dot{x}(0)=1$ of the equation $\ddot{x}+2=x$ by 3 methods: (i) Laplace transformation, (ii-iii) equation with constant coefficients, find the articular solution with method of undetermined coefficients and variation of constants. 2+2+2=6%

2. Consider the autonomous system of ODEs $\dot{x} = 2y - 2$, $\dot{y} = -2x + ay$. Determine the type of the equilibrium point (node, saddle, etc.), and sketch the phase portrait for the following values of the parameter a : -5, 0. Find the general solution as well. 2,5*2=5%

3. Find the general solution of $\ddot{x} - \frac{3}{t}\ddot{x} + \frac{6}{t^2}\dot{x} - \frac{6}{t^3}x = 0$, t < 0.

4. Give the lowest order linear homogeneous differential equation with real constant coefficients, for which $x(t) = \cos^2(2t) + t$ is a solution. Find the general solution as well. Solve the initial value problem $x(0)=1, \dot{x}(0)=1, \bar{x}(0)=1, \bar{x}(0)=0, \dots, x^{(n-1)}(0)=0$, where *n* is the order of equation. 2+1=3%

SOLUTIONS.

- 1. General solution $x(t) = c^1 e^t + c^2 e^{-t} + 2$. The solution of the initial value problem is $x(t) = e^t + 2 \cdot 2 + 2 = 6\%$
- 2. For a = 0 the equilibrium point (0, 1) is a center $(\lambda_{1,2} = \pm 2i)$, orientation is clockwise, the general solution is $x(t) = c^{1} \cos 2t + c^{2} \sin 2t$, $y(t) = 1 - c^{1} \sin 2t + c^{2} \cos 2t$. For a = +5 the equilibrium point $\left(-\frac{5}{2}, 1\right)$ is a stable node $\lambda_{1} = -1, \lambda_{2} = -4$. The general solution is $x(t) = -\frac{5}{2} - 2c^{1}e^{-t} + c^{2}e^{-4t}$, $y(t) = 1 + c^{1}e^{-t} - 2c^{2}e^{-4t}$. 2,5*2=5%
- 3. $x(t) = c^{1}t + c^{2}t^{2} + c^{3}t^{3} \cdot 2,5 + 0,5 = 3\%$
- 4. The equation is $x^{(IV)} + 16\ddot{x} = 0$ The general solution is $x(t) = c^1 + c^2 t + c^3 \sin 4t + c^4 \cos 4t$. The particular solution is x(t) = 1 + t. 2 + 1 = 3%