BME Mathematics Global Exam June 13, 2017. 11:00. ChMax. 40%. 15-75 minutes.

Good Luck!

Theory (3*5=15%.). Max. 15 minutes.

1. Define the arcsin (inverse sine) function. Sketch the graph, give the derivative and the second order Maclaurin polynomial.

2. Polar coordinates (definition, Jacobi determinant).

3. Continuous functions. Formulate at least 2 theorems related to $f \in C^0_{[a,b]}$.

Exercises 35+25+25=85%. Min. 75 minutes.

1. Solve the initial value problem y(0) = 0, y'(0) = 2 for the differential equation $y'' + y' = 2e^x + 1$ by 3 methods: (i) linear equation with constant coefficients (ii) reducible second order equation, (iii) Newton's method (write the 4th order Maclaurin polynomial of the solution). 7+3*6=25%Sketch the graph of this solution. 10%

2. Find the farthest point of the set $D = \{(x, y, z) | x^2 + y^2 + z^2 = 9\}$ to the point

 $P = (2\sqrt{2}, 2\sqrt{3}, 4)$ by 2 methods (i) elementary geometry, (ii) conditional extremum. How

much is the distance? 10+10+5=25%

3. Consider the vector field $\vec{v}(\vec{r}) = \vec{j} \times \vec{r}$, $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.

(i) Calculate $\oint \vec{v}(\vec{r})d\vec{r}$, if $\gamma : x = 2\cos t$, y = 0, $z = \sin t$, $0 \le t \le 2\pi$ by 2 methods (definition,

Stokes theorem). What kind of curve is γ ? 10+10=20%

(ii) Is $\vec{v}(\vec{r})$ a potential vector field? Calculate $\oiint_F \vec{v}(\vec{r})d\vec{F}$, if the closed surface is the boundary of the unit sphere (normal points outward):2+3=5%

Solutions

1.General solution $y = c_1 + c_2 e^{-x} + e^x + x$. The solution of the initial value problem is $y = e^x + x - 1 = 2x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \dots 5*5 = 25\%$.

x = 0 is a root. There is no extremum, inflection point. Asymptote y = x - 1, $x \to -\infty$. 10%.

- 2. The farthest point $Q = (-\sqrt{2}, -\sqrt{3}, -2)$. 10 + 10 = 20%. PQ = 9.5%
- 3. (i) $\vec{v}(\vec{r}) = \vec{j} \times \vec{r} = z\vec{i} x\vec{k}$. $rot\vec{v}(\vec{r}) = 2\vec{j}$. $\int_{\gamma} \vec{v}(\vec{r})d\vec{r} = -4\pi$. The curve is an ellipse.

10+10=20%

(ii) There is no potential function. $rot \vec{v}(\vec{r}) = 2\vec{j} \cdot div\vec{v}(\vec{r}) = 0$. $\oiint_F \vec{v}(\vec{r})d\vec{F} = 0$ according to the Gauss-Ostrogradsky theorem. 2+3=5%